Report finds average DDoS attack volumes have trebled in past year
If some one was to say that average DDoS attack volumes had doubled in the past year, you might be shocked.
But they haven't - they have trebled.
Cloud anti-DDoS vendor Link11 has released its DDoS findings for Q4 2018, revealing that the volume and complexity of attacks continued to grow during the final quarter of the year.
While Link11's Security Operations Center (LSOC) registered 13,910 attacks in Q4 (12.7% down compared to Q3), the average attack volume grew by 8.7% to 5Gbps, and 59% of attacks used multiple attack vectors.
There were a number of key findings from the report, which included:
-
Average attack volumes grew by 194% in 12 months: In Q4 2018, average attack volumes were 5Gbps, nearly three times the 1.7Gbps average seen in Q4 2017. Attackers are using increasingly powerful botnets comprising misused cloud servers, hijacked IoT devices and embedded devices.
-
Hyper-scale attacks hitting hard: In Q4, the LSOC registered 13 attacks with volumes over 80Gbps. The biggest attack seen reached 173.5 Gbps – well over double the volume of the biggest attack seen in Q4 2017, which hit 70.1 Gbps.
-
More complex multi-vector attacks: The majority (59%) of attacks in Q4 2018 were multi-vector attacks, compared with 45% in Q4 2017. The most complex attacks seen in Q4 used up to nine different attack vectors. The three most commonly used reflection amplification vectors were CLDAP, DNS reflection and SSDP.
Another interesting finding from LSOC is the timing of attacks, as they occcurred most frequently on Saturdays and Sundays with the level of attacks falling during the business week. Attackers also targetted organisations most frequently between 4pm and midnight Central European Time, with volumes at the lowest between 6am and 10am CET.
"The increase in the impact and complexity of attacks continues unabated," says Link11 COO Marc Wilczek.
"When faced with DDoS bandwidths well over 100 Gbps and multi-vector attacks, traditional IT security mechanisms are easily overwhelmed, and unprotected companies risk serious business disruption, loss of revenue and even fines. To stop these attacks disrupting business operations, organisations need proactive protection that tracks and responds to evolving attack scenarios and patterns automatically, using advanced machine-learning techniques.